九章算术作者(论衡九章算术的作者和朝代)

2023-05-04 13:55:04 41阅读

九章算术作者,论衡九章算术的作者和朝代?

《论衡》一书为东汉王充(27-97年)所作,大约作成于汉章帝元和三年(86年),现存文章有85篇。

现传本《九章算术》成书于何时,目前众说纷纭,多数认为在西汉末到东汉初之间,约公元一世纪前后,作者不详

九章算术的地位?

《九章算术》在数学上有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。

《九章算术》是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志着我国古代数学形成了完整的体系。

唐宋两代,《九章算术》都由国家明令规定为教科书。到了北宋,《九章算术》还曾由政府进行过刊刻,这是世界上最早的印刷本数学书。

九章算术的作者是谁?

《九章算术》其作者已不可考。

一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。

数书九章的作者是谁?

应是《数书九章》,中国古代数学著作,由南宋数学家秦九韶所著。【详细资料】书中共列算题81问,分为9类。全书采用问题集的形式,并不按数学方法来分类。题文也不只谈数学,还涉及自然现象和社会生活,成为了解当时社会政治和经济生活的重要参考文献。该书在数学内容上颇多创新,是对《九章算术》的继承和发展。它概括了宋元时期数学的主要成就,标志着中国古代数学的高峰。【《数书九章》简介】 中国南宋数学家秦九韶撰。秦九韶早年曾在杭州学习,后又从隐君子学习数学,成年后先后在湖北、安徽、江苏等地做官。1244年因母亡故回家守孝,潜心数学研究,于1247年9月著成《数术大略》,明代后期改名为《数书九章》。这是秦九韶唯一的数学著作,但仅此就使他成为中国宋元时期杰出的数学家之一。 《数书九章》最初叫《数术大略》或《数学大略》(9卷),分为9类,每类为一卷。约到元代时更名为《数学九章》,内容也由9卷改为18卷。明初抄本被收入《永乐大典》(1408),另抄本藏于文渊阁。明代学者王应遴传抄时定名为《数书九章》,明末学者赵琦美再抄时沿用此名。抄本形式流传到清代,1781年由李锐校订后收入《四库全书》。1842年由宋景昌校订后收入《宜稼堂丛书》第一次印刷出版,结束了近600年的传抄历史。1898年收入《古今算学丛书》,为第二次印刷。1936年又分别被收入《丛书集成初编》和《国学基本丛书》出版,流传甚广。目前还有十几种抄本传世,成为学者研讨时的珍品。【内容】 全书采用问题集的形式,并不按数学方法来分类。题文也不只谈数学,还涉及自然现象和社会生活,成为了解当时社会政治和经济生活的重要参考文献。 《数书九章》在数学内容上颇多创新。中国算筹式记数法及其演算式在此得以完整保存;自然数、分数、小数、负数都有专条论述,还第一次用小数表示无理根的近似值;卷1大衍类中灵活运用最大公约数和最小公倍数,并首创连环求等,借以求几个数的最小公倍数;在《孙子算经》中“物不知数”问题的基础上总结成大衍求一术,使一次同余式组的解法规格化、程序化,比西方高斯创用的同类方法早500多年,被公认为“中国剩余定理”;卷17市物类给出完整的方程术演算实录,书中还继贾宪增乘开方法进而作正负开方术,使之可以对任意次方程的有理根或无理根来求解,比19世纪英国霍纳的同类方法早500多年;书中卷5田域类所列三斜求积公式与公元1世纪希腊海伦给出的公式殊途同归;卷7、卷8测望类又使《海岛算经》中的测望之术发扬光大,再添光彩。【评价】 《数书九章》是对《九章算术》的继承和发展,概括了宋元时期汉族传统数学的主要成就,标志着中国古代数学的高峰。当它还是抄本时就先后被收入《永乐大典》和《四库全书》。1842年第一次印刷后即在汉族民间广泛流传。秦九韶所创造的正负开方术和大衍求一术长期以来影响着汉族数学的研究方向。焦循、李锐、张敦仁、骆腾凤、时曰醇、黄宗宪等数学家的著述都是在《数书九章》的直接或间接影响下完成的。秦九韶的成就也代表了中世纪世界数学发展的主流与最高水平,在世界数学史上占有崇高的地位。

九章算术是谁提出的?

张苍、耿寿昌。

1、张苍,西汉初期任丞相,历算学家, 精通律历。耿寿昌,汉宣帝时期任大司农中丞,天文学家、理财家,精通数学。《九章算术》是最重要的数学典籍之一,标志着中国古代数学已成完整体系,奠定了中国数学长期发展的基础。

2、《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问、答、术,有的是一题一术,有的是多题一术或一题多术。

3、《九章算术》的算法尽管抽象,但相互关系不明显,显得零乱。刘徽大大发展深化了中算中久已使用的率概念和齐同原理,把它们看作运算的纲纪。许多问题,只要找出其中的各种率关系,通过乘以散之,约以聚之,齐同以通之,都可以归结为今有术求解。

文章版权声明:除非注明,否则均为红枣网原创文章,转载或复制请以超链接形式并注明出处。